Philadelphia University - Faculty of Engineering MSc. - Mechatronics Engineering Department First Semester 2016/2017

Course Syllabus	
Course Title:	Advanced Engineering Mathematics (640711).
Text Book:	Advanced Engineering Mathematics, K.A.Stroud, Industrial Press, 2011
Class Time:	Sunday 15:00-18:00
Instructor:	Dr. Mohammed Mahdi
email	M_selman@philadelphia.edu.jo
website	www.philadelphia.edu.jo/academics/dr. mohammed mahdi
Prerequisites	BS degree in Mechatronics or related fields
Office Hours:	Monday, Wednesday : 13:00-15:00

Course Description:

Based on the knowledge of the undergraduate level students get the necessary skills in analytical and computational mathematical methods to work in a scientific environment and solve engineering problems in research and development projects.

Course outcomes \competencies

On completing the course, students will be able to have the following skills:

- Knowledge and understanding:-

A1. Understand analytical and computational principles in advanced mathematical methods.
A2. Knowledge of the range of transformations method for the solution of advanced problems.

- Intellectual skills: -

B1. Able to formulate strategies for solutions to advanced engineering problems based on the methods taught.
B2. Able to choose mathematical tools appropriate for advanced engineering problems.

- Professional and practical skills:-

C1. Able to apply advanced mathematical methods in engineering problems.
C2. Know the potential and the limits of computational solutions and choose algorithms and software accordingly. - General and transferable skills: -

D1. Use a structured approach to advanced quantitative engineering problems.
D2. Communicate solutions adequately.

week	Topics
$\mathbf{1 , 2 , 3}$	Laplace Transform: A) The Laplace Transform: -Definition of the Laplace transform, Laplace of some elementary functions, some important properties of the Laplace transform, Initial and Final value theorems, Methods of finding Laplace transform. B) The Inverse Laplace Transform: -Definition of inverse Laplace transform, , some important properties of inverse Laplace transform, methods of finding inverse Laplace transform. C) Applications of Laplace transform to Differential equations: -Ordinary differential equations with constant and variable coefficients, simultaneous differential equations, applications to mechanical and electrical systems. (Reference 5: chapter 6)
$\mathbf{4 , 5 , 6}$	State-space Representation:-Definitions and reviews of Matrix elementary operations, solution of state-space equation (Homogenous and Non-homogenous), kinds of state-space representation (Diagonal and Canonical) forms, properties of exponential matrix, methods of solving exponential matrix (using Laplace inverse, Cayley- Hamilton theorem, and Sylvester criterion). (Reference 5: chapter 8 and Reference 4: chapter 9)
$\mathbf{7 , 8}$	Z-transform: - A) Definition of the z-transform, z-transform of some elementary functions, some important properties of the z-transform, Initial and Final value theorems. B) The Inverse z-transform: -Definition of inverse z-transform, methods of finding inverse z-transform, some important properties of inverse z-
transform, Methods of solving difference equations using inverse z-transform. (Reference 6: chapter 2)	

$\mathbf{1 1 , 1 2 , 1 3}$	Numerical Solution of non-linear equations: -Newton-Raphson method, Lagrange interpolating polynomial, Euler's method, Modified Euler's method, second and fourth order Runge-kutta methods, numerical solution of non-linear equations and system of equations, least square error problems, Lievenberg marquardt algorithm, computer algorithmic design of numerical approaches. (Reference 5: chapter 19)
$\mathbf{1 4 , 1 5 , 1 6}$	Complex Variable theory: - A) Introduction: -The complex number system, polar form of complex number, operations in polar form, Taylor's series. B) Fourier Series and Integrals: -Definition of Fourier series, odd and even functions, half range Fourier sin and cosine, complex form of Fourier series, the convolution theorem, relationship of Fourier and Laplace transforms. (Reference 5: chapter 11 and chapter 13)

Teaching Method:

Lectures, tutorials, problem solving, modeling, and self-studies.

Grade Distribution	
Mid Examination	$\mathbf{3 0} \%$
Assignments, study cases	$\mathbf{3 0} \%$
Final Exam	$\mathbf{4 0} \%$

References:

1. Engineering Mathematics for engineering by Anthony Croft et al., $4^{\text {th }}$ edition 2012.
2. Advanced Modern Engineering Mathematics by Glyn James et al. 2010.
3. Advanced Engineering Mathematics by Dennis G. and Warren S., $4^{\text {th }}$ edition 2009
4. Modern Control Engineering by Katsuhiko Ogata $5^{\text {th }}$ edition 2011.
5. Advanced Engineering Mathematics by Erwin Kreyszig, $9^{\text {th }}$ edition 2006.
6. Discrete-time Control Systems by Katsuhiko Ogata, $2^{\text {nd }}$ edition 2009.
